Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation.
نویسندگان
چکیده
Reef-building corals inhabit high light environments and are dependent on photosynthetic endosymbiotic dinoflagellates for nutrition. While photoacclimation responses of the dinoflagellates to changes in illumination are well understood, host photoacclimation strategies are poorly known. This study investigated fluorescent protein expression in the shallow-water coral Acropora yongei during a 30 day laboratory photoacclimation experiment in the context of its dinoflagellate symbionts. Green fluorescent protein (GFP) concentration measured by Western blotting changed reversibly with light intensity. The first 15 days of the photoacclimation experiment led to a ∼1.6 times increase in GFP concentration for high light corals (900 μmol quanta m⁻² s⁻¹) and a ∼4 times decrease in GFP concentration for low light corals (30 μmol quanta m⁻² s⁻¹) compared with medium light corals (300 μmol quanta m⁻² s⁻¹). Green fluorescence increased ∼1.9 times in high light corals and decreased ∼1.9 times in low light corals compared with medium light corals. GFP concentration and green fluorescence intensity were significantly correlated. Typical photoacclimation responses in the dinoflagellates were observed including changes in density, photosynthetic pigment concentration and photosynthetic efficiency. Although fluorescent proteins are ubiquitous and abundant in scleractinian corals, their functions remain ambiguous. These results suggest that scleractinian corals regulate GFP to modulate the internal light environment and support the hypothesis that GFP has a photoprotective function. The success of photoprotection and photoacclimation strategies, in addition to stress responses, will be critical to the fate of scleractinian corals exposed to climate change and other stressors.
منابع مشابه
Cold induces acute stress but heat is ultimately more deleterious for the reef-building coral Acropora yongei
Climate change driven increases in intensity and frequency of both hot and cold extreme events contribute to coral reef decline by causing widespread coral bleaching and mortality. Here, we show that hot and cold temperature changes cause distinct physiological responses on different time scales in reef-building corals. We exposed the branching coral Acropora yongei in individual aquaria to a ±...
متن کاملDifferential localization of ion transporters suggests distinct cellular mechanisms for calcification and photosynthesis between two coral species.
Ion transport is fundamental for multiple physiological processes, including but not limited to pH regulation, calcification, and photosynthesis. Here, we investigated ion-transporting processes in tissues from the corals Acropora yongei and Stylophora pistillata, representatives of the complex and robust clades that diverged over 250 million years ago. Antibodies against complex IV revealed th...
متن کاملShort Term Growth Rate of Acropora downingi in the Coral Reef of Hengam Island, the Persian Gulf
In the Persian Gulf, Acropora- dominated coral reefs have been damaged by global and local disturbances. Inversion of coral colonies mostly occur due to anchoring and fishing in many coral reefs, particularly those established nearby human societies, like the coral reef of Hengam Island, in the Persian Gulf. The short term growth rates (weight increment) of inversely and normally transplanted c...
متن کاملFluorescent protein‐mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments
The genomic framework that enables corals to adjust to unfavourable conditions is crucial for coral reef survival in a rapidly changing climate. We have explored the striking intraspecific variability in the expression of coral pigments from the green fluorescent protein (GFP) family to elucidate the genomic basis for the plasticity of stress responses among reef corals. We show that multicopy ...
متن کاملEffects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae
While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortalit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 21 شماره
صفحات -
تاریخ انتشار 2010